| Opcode/Instruction | Op/En | 64/32 bit Mode Support | CPUID Feature Flag | Description | 
|---|---|---|---|---|
| NP 0F AE /6 XSAVEOPT mem | M | V/V | XSAVEOPT | Save state components specified by EDX:EAX to mem, optimizing if possible. | 
| NP REX.W + 0F AE /6 XSAVEOPT64 mem | M | V/V | XSAVEOPT | Save state components specified by EDX:EAX to mem, optimizing if possible. | 
| Op/En | Operand 1 | Operand 2 | Operand 3 | Operand 4 | 
|---|---|---|---|---|
| M | ModRM:r/m (r, w) | N/A | N/A | N/A | 
Performs a full or partial save of processor state components to the XSAVE area located at the memory address specified by the destination operand. The implicit EDX:EAX register pair specifies a 64-bit instruction mask. The specific state components saved correspond to the bits set in the requested-feature bitmap (RFBM), which is the logical-AND of EDX:EAX and XCR0.
The format of the XSAVE area is detailed in Section 13.4, “XSAVE Area,” of Intel® 64 and IA-32 Architectures Soft-ware Developer’s Manual, Volume 1. Like FXRSTOR and FXSAVE, the memory format used for x87 state depends on a REX.W prefix; see Section 13.5.1, “x87 State” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.
Section 13.9, “Operation of XSAVEOPT,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 provides a detailed description of the operation of the XSAVEOPT instruction. The following items provide a high-level outline:
Use of a destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) will result in a general-protection (#GP) exception. In 64-bit mode, the upper 32 bits of RDX and RAX are ignored.
1.
There is an exception made for MXCSR and MXCSR_MASK, which belong to state component 1 — SSE. XSAVEOPT always saves these to memory if RFBM[1] = 1 or RFBM[2] = 1, regardless of the value of XINUSE.
See Section 13.6, “Processor Tracking of XSAVE-Managed State,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 for discussion of the bitmap XMODIFIED and of the quantity XRSTOR_INFO.
RFBM := XCR0 AND EDX:EAX;
                                    /* bitwise logical AND */
OLD_BV := XSTATE_BV field from XSAVE header;
TO_BE_SAVED := RFBM AND XINUSE;
IF in VMX non-root operation
    THEN VMXNR := 1;
    ELSE VMXNR := 0;
FI;
LAXA := linear address of XSAVE area;
IF XRSTOR_INFO = CPL,VMXNR,LAXA,00000000_00000000H
    THEN TO_BE_SAVED := TO_BE_SAVED AND XMODIFIED;
FI;
IF TO_BE_SAVED[0] = 1
    THEN store x87 state into legacy region of XSAVE area;
FI;
IF TO_BE_SAVED[1]
    THEN store XMM registers into legacy region of XSAVE area; // this step does not save MXCSR or MXCSR_MASK
FI;
IF RFBM[1] = 1 or RFBM[2] = 1
    THEN store MXCSR and MXCSR_MASK into legacy region of XSAVE area;
FI;
FOR i := 2 TO 62
    IF TO_BE_SAVED[i] = 1
         THEN save XSAVE state component i at offset n from base of XSAVE area (n enumerated by CPUID(EAX=0DH,ECX=i):EBX);
    FI;
ENDFOR;
XSTATE_BV field in XSAVE header := (OLD_BV AND NOT RFBM) OR (XINUSE AND RFBM);
None.
XSAVEOPT void _xsaveopt( void * , unsigned __int64);
XSAVEOPT void _xsaveopt64( void * , unsigned __int64);
| #GP(0) | If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit. If a memory operand is not aligned on a 64-byte boundary, regardless of segment. | 
| #SS(0) | If a memory operand effective address is outside the SS segment limit. | 
| #PF(fault-code) | If a page fault occurs. | 
| #NM | If CR0.TS[bit 3] = 1. | 
| #UD | If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEOPT[bit 0] = 0. If CR4.OSXSAVE[bit 18] = 0. If the LOCK prefix is used. | 
| #AC | If this exception is disabled a general protection exception (#GP) is signaled if the memory operand is not aligned on a 64-byte boundary, as described above. If the alignment check exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may vary with implementation, as follows. In all implementations where #AC is not signaled, a general protection exception is signaled in its place. In addition, the width of the alignment check may also vary with implementation. For instance, for a given implementation, an align-ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte misalignments). | 
| #GP | If a memory operand is not aligned on a 64-byte boundary, regardless of segment. If any part of the operand lies outside the effective address space from 0 to FFFFH. | 
| #NM | If CR0.TS[bit 3] = 1. | 
| #UD | If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEOPT[bit 0] = 0. If CR4.OSXSAVE[bit 18] = 0. If the LOCK prefix is used. | 
Same exceptions as in protected mode.
Same exceptions as in protected mode.
| #SS(0) | If a memory address referencing the SS segment is in a non-canonical form. | 
| #GP(0) | If the memory address is in a non-canonical form. If a memory operand is not aligned on a 64-byte boundary, regardless of segment. | 
| #PF(fault-code) | If a page fault occurs. | 
| #NM | If CR0.TS[bit 3] = 1. | 
| #UD | If CPUID.01H:ECX.XSAVE[bit 26] = 0 or CPUID.(EAX=0DH,ECX=1):EAX.XSAVEOPT[bit 0] = 0. If CR4.OSXSAVE[bit 18] = 0. If the LOCK prefix is used. | 
| #AC | If this exception is disabled a general protection exception (#GP) is signaled if the memory operand is not aligned on a 64-byte boundary, as described above. If the alignment check exception (#AC) is enabled (and the CPL is 3), signaling of #AC is not guaranteed and may vary with implementation, as follows. In all implementations where #AC is not signaled, a general protection exception is signaled in its place. In addition, the width of the alignment check may also vary with implementation. For instance, for a given implementation, an align-ment check exception might be signaled for a 2-byte misalignment, whereas a general protec-tion exception might be signaled for all other misalignments (4-, 8-, or 16-byte misalignments). |