Opcode/Instruction | Op / En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|
VEX.128.66.0F38.W0 0C /r VPERMILPS xmm1, xmm2, xmm3/m128 | A | V/V | AVX | Permute single-precision floating-point values in xmm2 using controls from xmm3/m128 and store result in xmm1. |
VEX.128.66.0F3A.W0 04 /r ib VPERMILPS xmm1, xmm2/m128, imm8 | B | V/V | AVX | Permute single-precision floating-point values in xmm2/m128 using controls from imm8 and store result in xmm1. |
VEX.256.66.0F38.W0 0C /r VPERMILPS ymm1, ymm2, ymm3/m256 | A | V/V | AVX | Permute single-precision floating-point values in ymm2 using controls from ymm3/m256 and store result in ymm1. |
VEX.256.66.0F3A.W0 04 /r ib VPERMILPS ymm1, ymm2/m256, imm8 | B | V/V | AVX | Permute single-precision floating-point values in ymm2/m256 using controls from imm8 and store result in ymm1. |
EVEX.128.66.0F38.W0 0C /r VPERMILPS xmm1 {k1}{z}, xmm2, xmm3/m128/m32bcst | C | V/V | AVX512VL AVX512F | Permute single-precision floating-point values xmm2 using control from xmm3/m128/m32bcst and store the result in xmm1 using writemask k1. |
EVEX.256.66.0F38.W0 0C /r VPERMILPS ymm1 {k1}{z}, ymm2, ymm3/m256/m32bcst | C | V/V | AVX512VL AVX512F | Permute single-precision floating-point values ymm2 using control from ymm3/m256/m32bcst and store the result in ymm1 using writemask k1. |
EVEX.512.66.0F38.W0 0C /r VPERMILPS zmm1 {k1}{z}, zmm2, zmm3/m512/m32bcst | C | V/V | AVX512F | Permute single-precision floating-point values zmm2 using control from zmm3/m512/m32bcst and store the result in zmm1 using writemask k1. |
EVEX.128.66.0F3A.W0 04 /r ib VPERMILPS xmm1 {k1}{z}, xmm2/m128/m32bcst, imm8 | D | V/V | AVX512VL AVX512F | Permute single-precision floating-point values xmm2/m128/m32bcst using controls from imm8 and store the result in xmm1 using writemask k1. |
EVEX.256.66.0F3A.W0 04 /r ib VPERMILPS ymm1 {k1}{z}, ymm2/m256/m32bcst, imm8 | D | V/V | AVX512VL AVX512F | Permute single-precision floating-point values ymm2/m256/m32bcst using controls from imm8 and store the result in ymm1 using writemask k1. |
EVEX.512.66.0F3A.W0 04 /r ibVPERMILPS zmm1 {k1}{z}, zmm2/m512/m32bcst, imm8 | D | V/V | AVX512F | Permute single-precision floating-point values zmm2/m512/m32bcst using controls from imm8 and store the result in zmm1 using writemask k1. |
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|---|
A | N/A | ModRM:reg (w) | VEX.vvvv (r) | ModRM:r/m (r) | N/A |
B | N/A | ModRM:reg (w) | ModRM:r/m (r) | N/A | N/A |
C | Full | ModRM:reg (w) | EVEX.vvvv (r) | ModRM:r/m (r) | N/A |
D | Full | ModRM:reg (w) | ModRM:r/m (r) | N/A | N/A |
Description
Variable control version:
Permute quadruples of single-precision floating-point values in the first source operand (second operand), each quadruplet using a 2-bit control field in the corresponding dword element of the second source operand. Permuted results are stored in the destination operand (first operand).
The 2-bit control fields are located at the low two bits of each dword element (see Figure 5-26). Each control deter-mines which of the source element in an input quadruple is selected for the destination element. Each quadruple of source elements must lie in the same 128-bit region as the destination.
EVEX version: The second source operand (third operand) is a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 32-bit memory location. Permuted results are written to the destination under the writemask.
(immediate control version)
Permute quadruples of single-precision floating-point values in the first source operand (second operand), each quadruplet using a 2-bit control field in the imm8 byte. Each 128-bit lane in the destination operand (first operand) use the four control fields of the same imm8 byte.
VEX version: The source operand is a YMM/XMM register or a 256/128-bit memory location and the destination operand is a YMM/XMM register.
EVEX version: The source operand (second operand) is a ZMM/YMM/XMM register, a 512/256/128-bit memory location or a 512/256/128-bit vector broadcasted from a 32-bit memory location. Permuted results are written to the destination under the writemask.
Note: For the imm8 version, VEX.vvvv and EVEX.vvvv are reserved and must be 1111b otherwise instruction will #UD.
Operation
Select4(SRC, control) {
CASE (control[1:0]) OF
0:
TMP := SRC[31:0];
1:
TMP := SRC[63:32];
2:
TMP := SRC[95:64];
3:
TMP := SRC[127:96];
ESAC;
RETURN TMP
}
VPERMILPS (EVEX immediate versions)
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j := 0 TO KL-1
i := j * 32
IF (EVEX.b = 1) AND (SRC1 *is memory*)
THEN TMP_SRC1[i+31:i] := SRC1[31:0];
ELSE TMP_SRC1[i+31:i] := SRC1[i+31:i];
FI;
ENDFOR;
TMP_DEST[31:0] := Select4(TMP_SRC1[127:0], imm8[1:0]);
TMP_DEST[63:32] := Select4(TMP_SRC1[127:0], imm8[3:2]);
TMP_DEST[95:64] := Select4(TMP_SRC1[127:0], imm8[5:4]);
TMP_DEST[127:96] := Select4(TMP_SRC1[127:0], imm8[7:6]); FI;
IF VL >= 256
TMP_DEST[159:128] := Select4(TMP_SRC1[255:128], imm8[1:0]); FI;
TMP_DEST[191:160] := Select4(TMP_SRC1[255:128], imm8[3:2]); FI;
TMP_DEST[223:192] := Select4(TMP_SRC1[255:128], imm8[5:4]); FI;
TMP_DEST[255:224] := Select4(TMP_SRC1[255:128], imm8[7:6]); FI;
FI;
IF VL >= 512
TMP_DEST[287:256] := Select4(TMP_SRC1[383:256], imm8[1:0]); FI;
TMP_DEST[319:288] := Select4(TMP_SRC1[383:256], imm8[3:2]); FI;
TMP_DEST[351:320] := Select4(TMP_SRC1[383:256], imm8[5:4]); FI;
TMP_DEST[383:352] := Select4(TMP_SRC1[383:256], imm8[7:6]); FI;
TMP_DEST[415:384] := Select4(TMP_SRC1[511:384], imm8[1:0]); FI;
TMP_DEST[447:416] := Select4(TMP_SRC1[511:384], imm8[3:2]); FI;
TMP_DEST[479:448] := Select4(TMP_SRC1[511:384], imm8[5:4]); FI;
TMP_DEST[511:480] := Select4(TMP_SRC1[511:384], imm8[7:6]); FI;
FI;
FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE
IF *merging-masking*
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] := 0
;zeroing-masking
FI;
FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
VPERMILPS (256-bit immediate version)
DEST[31:0] := Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32] := Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64] := Select4(SRC1[127:0], imm8[5:4]);
DEST[127:96] := Select4(SRC1[127:0], imm8[7:6]);
DEST[159:128] := Select4(SRC1[255:128], imm8[1:0]);
DEST[191:160] := Select4(SRC1[255:128], imm8[3:2]);
DEST[223:192] := Select4(SRC1[255:128], imm8[5:4]);
DEST[255:224] := Select4(SRC1[255:128], imm8[7:6]);
VPERMILPS (128-bit immediate version)
DEST[31:0] := Select4(SRC1[127:0], imm8[1:0]);
DEST[63:32] := Select4(SRC1[127:0], imm8[3:2]);
DEST[95:64] := Select4(SRC1[127:0], imm8[5:4]);
DEST[127:96] := Select4(SRC1[127:0], imm8[7:6]);
DEST[MAXVL-1:128] := 0
VPERMILPS (EVEX variable versions)
(KL, VL) = (16, 512)
FOR j := 0 TO KL-1
i := j * 32
IF (EVEX.b = 1) AND (SRC2 *is memory*)
THEN TMP_SRC2[i+31:i] := SRC2[31:0];
ELSE TMP_SRC2[i+31:i] := SRC2[i+31:i];
FI;
ENDFOR;
TMP_DEST[31:0] := Select4(SRC1[127:0], TMP_SRC2[1:0]);
TMP_DEST[63:32] := Select4(SRC1[127:0], TMP_SRC2[33:32]);
TMP_DEST[95:64] := Select4(SRC1[127:0], TMP_SRC2[65:64]);
TMP_DEST[127:96] := Select4(SRC1[127:0], TMP_SRC2[97:96]);
IF VL >= 256
TMP_DEST[159:128] := Select4(SRC1[255:128], TMP_SRC2[129:128]);
TMP_DEST[191:160] := Select4(SRC1[255:128], TMP_SRC2[161:160]);
TMP_DEST[223:192] := Select4(SRC1[255:128], TMP_SRC2[193:192]);
TMP_DEST[255:224] := Select4(SRC1[255:128], TMP_SRC2[225:224]);
FI;
IF VL >= 512
TMP_DEST[287:256] := Select4(SRC1[383:256], TMP_SRC2[257:256]);
TMP_DEST[319:288] := Select4(SRC1[383:256], TMP_SRC2[289:288]);
TMP_DEST[351:320] := Select4(SRC1[383:256], TMP_SRC2[321:320]);
TMP_DEST[383:352] := Select4(SRC1[383:256], TMP_SRC2[353:352]);
TMP_DEST[415:384] := Select4(SRC1[511:384], TMP_SRC2[385:384]);
TMP_DEST[447:416] := Select4(SRC1[511:384], TMP_SRC2[417:416]);
TMP_DEST[479:448] := Select4(SRC1[511:384], TMP_SRC2[449:448]);
TMP_DEST[511:480] := Select4(SRC1[511:384], TMP_SRC2[481:480]);
FI;
FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*
THEN DEST[i+31:i] := TMP_DEST[i+31:i]
ELSE
IF *merging-masking*
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] := 0
;zeroing-masking
FI;
FI;
ENDFOR
DEST[MAXVL-1:VL] := 0
VPERMILPS (256-bit variable version)
DEST[31:0] := Select4(SRC1[127:0], SRC2[1:0]);
DEST[63:32] := Select4(SRC1[127:0], SRC2[33:32]);
DEST[95:64] := Select4(SRC1[127:0], SRC2[65:64]);
DEST[127:96] := Select4(SRC1[127:0], SRC2[97:96]);
DEST[159:128] := Select4(SRC1[255:128], SRC2[129:128]);
DEST[191:160] := Select4(SRC1[255:128], SRC2[161:160]);
DEST[223:192] := Select4(SRC1[255:128], SRC2[193:192]);
DEST[255:224] := Select4(SRC1[255:128], SRC2[225:224]);
DEST[MAXVL-1:256] := 0
VPERMILPS (128-bit variable version)
DEST[31:0] := Select4(SRC1[127:0], SRC2[1:0]);
DEST[63:32] := Select4(SRC1[127:0], SRC2[33:32]);
DEST[95:64] :=Select4(SRC1[127:0], SRC2[65:64]);
DEST[127:96] := Select4(SRC1[127:0], SRC2[97:96]);
DEST[MAXVL-1:128] := 0
Intel C/C++ Compiler Intrinsic Equivalent
VPERMILPS __m512 _mm512_permute_ps( __m512 a, int imm);
VPERMILPS __m512 _mm512_mask_permute_ps(__m512 s, __mmask16 k, __m512 a, int imm);
VPERMILPS __m512 _mm512_maskz_permute_ps( __mmask16 k, __m512 a, int imm);
VPERMILPS __m256 _mm256_mask_permute_ps(__m256 s, __mmask8 k, __m256 a, int imm);
VPERMILPS __m256 _mm256_maskz_permute_ps( __mmask8 k, __m256 a, int imm);
VPERMILPS __m128 _mm_mask_permute_ps(__m128 s, __mmask8 k, __m128 a, int imm);
VPERMILPS __m128 _mm_maskz_permute_ps( __mmask8 k, __m128 a, int imm);
VPERMILPS __m512 _mm512_permutevar_ps( __m512i i, __m512 a);
VPERMILPS __m512 _mm512_mask_permutevar_ps(__m512 s, __mmask16 k, __m512i i, __m512 a);
VPERMILPS __m512 _mm512_maskz_permutevar_ps( __mmask16 k, __m512i i, __m512 a);
VPERMILPS __m256 _mm256_mask_permutevar_ps(__m256 s, __mmask8 k, __m256 i, __m256 a);
VPERMILPS __m256 _mm256_maskz_permutevar_ps( __mmask8 k, __m256 i, __m256 a);
VPERMILPS __m128 _mm_mask_permutevar_ps(__m128 s, __mmask8 k, __m128 i, __m128 a);
VPERMILPS __m128 _mm_maskz_permutevar_ps( __mmask8 k, __m128 i, __m128 a);
VPERMILPS __m128 _mm_permute_ps (__m128 a, int control);
VPERMILPS __m256 _mm256_permute_ps (__m256 a, int control);
VPERMILPS __m128 _mm_permutevar_ps (__m128 a, __m128i control);
VPERMILPS __m256 _mm256_permutevar_ps (__m256 a, __m256i control);
SIMD Floating-Point Exceptions
None.
Other Exceptions
Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”
Additionally:
#UD EVEX-encoded instruction, see Table 2-50, “Type E4NF Class Exception Conditions.” |
If VEX.W = 1. |
Additionally:
#UD | If either (E)VEX.vvvv != 1111B and with imm8. |