Opcode/Instruction | Op /En | 64/32 bit Mode Support | CPUID Feature Flag | Description |
---|---|---|---|---|
66 0F 14 /r UNPCKLPD xmm1, xmm2/m128 | A | V/V | SSE2 | Unpacks and Interleaves double precision floating-point values from low quadwords of xmm1 and xmm2/m128. |
VEX.128.66.0F.WIG 14 /r VUNPCKLPD xmm1,xmm2, xmm3/m128 | B | V/V | AVX | Unpacks and Interleaves double precision floating-point values from low quadwords of xmm2 and xmm3/m128. |
VEX.256.66.0F.WIG 14 /r VUNPCKLPD ymm1,ymm2, ymm3/m256 | B | V/V | AVX | Unpacks and Interleaves double precision floating-point values from low quadwords of ymm2 and ymm3/m256. |
EVEX.128.66.0F.W1 14 /r VUNPCKLPD xmm1 {k1}{z}, xmm2, xmm3/m128/m64bcst | C | V/V | AVX512VL AVX512F | Unpacks and Interleaves double precision floating-point values from low quadwords of xmm2 and xmm3/m128/m64bcst subject to write mask k1. |
EVEX.256.66.0F.W1 14 /r VUNPCKLPD ymm1 {k1}{z}, ymm2, ymm3/m256/m64bcst | C | V/V | AVX512VL AVX512F | Unpacks and Interleaves double precision floating-point values from low quadwords of ymm2 and ymm3/m256/m64bcst subject to write mask k1. |
EVEX.512.66.0F.W1 14 /r VUNPCKLPD zmm1 {k1}{z}, zmm2, zmm3/m512/m64bcst | C | V/V | AVX512F | Unpacks and Interleaves double precision floating-point values from low quadwords of zmm2 and zmm3/m512/m64bcst subject to write mask k1. |
Op/En | Tuple Type | Operand 1 | Operand 2 | Operand 3 | Operand 4 |
---|---|---|---|---|---|
A | N/A | ModRM:reg (r, w) | ModRM:r/m (r) | N/A | N/A |
B | N/A | ModRM:reg (w) | VEX.vvvv (r) | ModRM:r/m (r) | N/A |
C | Full | ModRM:reg (w) | EVEX.vvvv (r) | ModRM:r/m (r) | N/A |
Performs an interleaved unpack of the low double precision floating-point values from the first source operand and the second source operand.
128-bit Legacy SSE version: The second source can be an XMM register or an 128-bit memory location. The desti-nation is not distinct from the first source XMM register and the upper bits (MAXVL-1:128) of the corresponding ZMM register destination are unmodified. When unpacking from a memory operand, an implementation may fetch only the appropriate 64 bits; however, alignment to 16-byte boundary and normal segment checking will still be enforced.
VEX.128 encoded version: The first source operand is a XMM register. The second source operand can be a XMM register or a 128-bit memory location. The destination operand is a XMM register. The upper bits (MAXVL-1:128) of the corresponding ZMM register destination are zeroed.
VEX.256 encoded version: The first source operand is a YMM register. The second source operand can be a YMM register or a 256-bit memory location. The destination operand is a YMM register.
EVEX.512 encoded version: The first source operand is a ZMM register. The second source operand is a ZMM register, a 512-bit memory location, or a 512-bit vector broadcasted from a 64-bit memory location. The destina-tion operand is a ZMM register, conditionally updated using writemask k1.
EVEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register, a 256-bit memory location, or a 256-bit vector broadcasted from a 64-bit memory location. The destina-tion operand is a YMM register, conditionally updated using writemask k1.
EVEX.128 encoded version: The first source operand is an XMM register. The second source operand is a XMM register, a 128-bit memory location, or a 128-bit vector broadcasted from a 64-bit memory location. The destina-tion operand is a XMM register, conditionally updated using writemask k1.
VUNPCKLPD (EVEX Encoded Versions When SRC2 is a Register)
(KL, VL) = (2, 128), (4, 256), (8, 512) IF VL >= 128 TMP_DEST[63:0] := SRC1[63:0] TMP_DEST[127:64] := SRC2[63:0] FI; IF VL >= 256 TMP_DEST[191:128] := SRC1[191:128] TMP_DEST[255:192] := SRC2[191:128] FI; IF VL >= 512 TMP_DEST[319:256] := SRC1[319:256] TMP_DEST[383:320] := SRC2[319:256] TMP_DEST[447:384] := SRC1[447:384] TMP_DEST[511:448] := SRC2[447:384] FI; FOR j := 0 TO KL-1 i := j * 64 IF k1[j] OR *no writemask* THEN DEST[i+63:i] := TMP_DEST[i+63:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+63:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking DEST[i+63:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0
VUNPCKLPD (EVEX Encoded Version When SRC2 is Memory)
(KL, VL) = (2, 128), (4, 256), (8, 512) FOR j := 0 TO KL-1 i := j * 64 IF (EVEX.b = 1) THEN TMP_SRC2[i+63:i] := SRC2[63:0] ELSE TMP_SRC2[i+63:i] := SRC2[i+63:i] FI; ENDFOR; IF VL >= 128 TMP_DEST[63:0] := SRC1[63:0] TMP_DEST[127:64] := TMP_SRC2[63:0] FI; IF VL >= 256 TMP_DEST[191:128] := SRC1[191:128] TMP_DEST[255:192] := TMP_SRC2[191:128] FI; IF VL >= 512 TMP_DEST[319:256] := SRC1[319:256] TMP_DEST[383:320] := TMP_SRC2[319:256] TMP_DEST[447:384] := SRC1[447:384] TMP_DEST[511:448] := TMP_SRC2[447:384] FI; FOR j := 0 TO KL-1 i := j * 64 IF k1[j] OR *no writemask* THEN DEST[i+63:i] := TMP_DEST[i+63:i] ELSE IF *merging-masking* ; merging-masking THEN *DEST[i+63:i] remains unchanged* ELSE *zeroing-masking* ; zeroing-masking DEST[i+63:i] := 0 FI FI; ENDFOR DEST[MAXVL-1:VL] := 0
VUNPCKLPD (VEX.256 Encoded Version)
DEST[63:0] := SRC1[63:0] DEST[127:64] := SRC2[63:0] DEST[191:128] := SRC1[191:128] DEST[255:192] := SRC2[191:128] DEST[MAXVL-1:256] := 0
VUNPCKLPD (VEX.128 Encoded Version)
DEST[63:0] := SRC1[63:0] DEST[127:64] := SRC2[63:0] DEST[MAXVL-1:128] := 0
UNPCKLPD (128-bit Legacy SSE Version)
DEST[63:0] := SRC1[63:0] DEST[127:64] := SRC2[63:0] DEST[MAXVL-1:128] (Unmodified)
VUNPCKLPD __m512d _mm512_unpacklo_pd( __m512d a, __m512d b);
VUNPCKLPD __m512d _mm512_mask_unpacklo_pd(__m512d s, __mmask8 k, __m512d a, __m512d b);
VUNPCKLPD __m512d _mm512_maskz_unpacklo_pd(__mmask8 k, __m512d a, __m512d b);
VUNPCKLPD __m256d _mm256_unpacklo_pd(__m256d a, __m256d b)
VUNPCKLPD __m256d _mm256_mask_unpacklo_pd(__m256d s, __mmask8 k, __m256d a, __m256d b);
VUNPCKLPD __m256d _mm256_maskz_unpacklo_pd(__mmask8 k, __m256d a, __m256d b);
UNPCKLPD __m128d _mm_unpacklo_pd(__m128d a, __m128d b)
VUNPCKLPD __m128d _mm_mask_unpacklo_pd(__m128d s, __mmask8 k, __m128d a, __m128d b);
VUNPCKLPD __m128d _mm_maskz_unpacklo_pd(__mmask8 k, __m128d a, __m128d b);
None.
Non-EVEX-encoded instructions, see Table 2-21, “Type 4 Class Exception Conditions.”
EVEX-encoded instructions, see Table 2-50, “Type E4NF Class Exception Conditions.”