PMULHRSW—Packed Multiply High With Round and Scale

Opcode/Instruction Op/En 64/32 bit Mode Support CPUID Feature Flag Description

NP 0F 38 0B /r1

PMULHRSW mm1, mm2/m64

A V/V SSSE3 Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to mm1.

66 0F 38 0B /r

PMULHRSW xmm1, xmm2/m128

A V/V SSSE3 Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to xmm1.

VEX.128.66.0F38.WIG 0B /r

VPMULHRSW xmm1, xmm2, xmm3/m128

B V/V AVX Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to xmm1.

VEX.256.66.0F38.WIG 0B /r

VPMULHRSW ymm1, ymm2, ymm3/m256

B V/V AVX2 Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to ymm1.
EVEX.128.66.0F38.WIG 0B /r VPMULHRSW xmm1 {k1}{z}, xmm2, xmm3/m128 C V/V AVX512VL AVX512BW Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to xmm1 under writemask k1.
EVEX.256.66.0F38.WIG 0B /r VPMULHRSW ymm1 {k1}{z}, ymm2, ymm3/m256 C V/V AVX512VL AVX512BW Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to ymm1 under writemask k1.
EVEX.512.66.0F38.WIG 0B /r VPMULHRSW zmm1 {k1}{z}, zmm2, zmm3/m512 C V/V AVX512BW Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits to zmm1 under writemask k1.

NOTES:

1. See note in Section 2.5, “Intel® AVX and Intel® SSE Instruction Exception Specification” in the Intel® 64 and IA-32 Architectures Soft-

ware Developer’s Manual, Volume 2A and Section 23.25.3, “Exception Conditions of Legacy SIMD Instructions Operating on MMX Reg-isters” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Instruction Operand Encoding

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4
A N/A ModRM:reg (r, w) ModRM:r/m (r) N/A N/A
B N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A
C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A

Description

PMULHRSW multiplies vertically each signed 16-bit integer from the destination operand (first operand) with the corresponding signed 16-bit integer of the source operand (second operand), producing intermediate, signed 32-bit integers. Each intermediate 32-bit integer is truncated to the 18 most significant bits. Rounding is always performed by adding 1 to the least significant bit of the 18-bit intermediate result. The final result is obtained by selecting the 16 bits immediately to the right of the most significant bit of each 18-bit intermediate result and packed to the destination operand.

When the source operand is a 128-bit memory operand, the operand must be aligned on a 16-byte boundary or a general-protection exception (#GP) will be generated.

In 64-bit mode and not encoded with VEX/EVEX, use the REX prefix to access XMM8-XMM15 registers.

Legacy SSE version 64-bit operand: Both operands can be MMX registers. The second source operand is an MMX register or a 64-bit memory location.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the corresponding YMM destina-tion register remain unchanged.

VEX.128 encoded version: The first source and destination operands are XMM registers. The second source operand is an XMM register or a 128-bit memory location. Bits (MAXVL-1:128) of the destination YMM register are zeroed.

VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The first source and destination operands are YMM registers.

EVEX encoded versions: The first source operand is a ZMM/YMM/XMM register. The second source operand can be a ZMM/YMM/XMM register, a 512/256/128-bit memory location. The destination operand is a ZMM/YMM/XMM register conditionally updated with writemask k1.

Operation

PMULHRSW (With 64-bit Operands)

    temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1;
    temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1;
    temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >> 14) + 1;
    temp3[31:0] = INT32 ((DEST[63:48] * SRc[63:48]) >> 14) + 1;
    DEST[15:0] = temp0[16:1];
    DEST[31:16] = temp1[16:1];
    DEST[47:32] = temp2[16:1];
    DEST[63:48] = temp3[16:1];

PMULHRSW (With 128-bit Operands)

    temp0[31:0] = INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1;
    temp1[31:0] = INT32 ((DEST[31:16] * SRC[31:16]) >>14) + 1;
    temp2[31:0] = INT32 ((DEST[47:32] * SRC[47:32]) >>14) + 1;
    temp3[31:0] = INT32 ((DEST[63:48] * SRC[63:48]) >>14) + 1;
    temp4[31:0] = INT32 ((DEST[79:64] * SRC[79:64]) >>14) + 1;
    temp5[31:0] = INT32 ((DEST[95:80] * SRC[95:80]) >>14) + 1;
    temp6[31:0] = INT32 ((DEST[111:96] * SRC[111:96]) >>14) + 1;
    temp7[31:0] = INT32 ((DEST[127:112] * SRC[127:112) >>14) + 1;
    DEST[15:0] = temp0[16:1];
    DEST[31:16] = temp1[16:1];
    DEST[47:32] = temp2[16:1];
    DEST[63:48] = temp3[16:1];
    DEST[79:64] = temp4[16:1];
    DEST[95:80] = temp5[16:1];
    DEST[111:96] = temp6[16:1];
    DEST[127:112] = temp7[16:1];

VPMULHRSW (VEX.128 Encoded Version)

temp0[31:0] := INT32 ((SRC1[15:0] * SRC2[15:0]) >>14) + 1
temp1[31:0] := INT32 ((SRC1[31:16] * SRC2[31:16]) >>14) + 1
temp2[31:0] := INT32 ((SRC1[47:32] * SRC2[47:32]) >>14) + 1
temp3[31:0] := INT32 ((SRC1[63:48] * SRC2[63:48]) >>14) + 1
temp4[31:0] := INT32 ((SRC1[79:64] * SRC2[79:64]) >>14) + 1
temp5[31:0] := INT32 ((SRC1[95:80] * SRC2[95:80]) >>14) + 1
temp6[31:0] := INT32 ((SRC1[111:96] * SRC2[111:96]) >>14) + 1
temp7[31:0] := INT32 ((SRC1[127:112] * SRC2[127:112) >>14) + 1
DEST[15:0] := temp0[16:1]
DEST[31:16] := temp1[16:1]
DEST[47:32] := temp2[16:1]
DEST[63:48] := temp3[16:1]
DEST[79:64] := temp4[16:1]
DEST[95:80] := temp5[16:1]
DEST[111:96] := temp6[16:1]
DEST[127:112] := temp7[16:1]
DEST[MAXVL-1:128] := 0

VPMULHRSW (VEX.256 Encoded Version)

temp0[31:0] := INT32 ((SRC1[15:0] * SRC2[15:0]) >>14) + 1
temp1[31:0] := INT32 ((SRC1[31:16] * SRC2[31:16]) >>14) + 1
temp2[31:0] := INT32 ((SRC1[47:32] * SRC2[47:32]) >>14) + 1
temp3[31:0] := INT32 ((SRC1[63:48] * SRC2[63:48]) >>14) + 1
temp4[31:0] := INT32 ((SRC1[79:64] * SRC2[79:64]) >>14) + 1
temp5[31:0] := INT32 ((SRC1[95:80] * SRC2[95:80]) >>14) + 1
temp6[31:0] := INT32 ((SRC1[111:96] * SRC2[111:96]) >>14) + 1
temp7[31:0] := INT32 ((SRC1[127:112] * SRC2[127:112) >>14) + 1
temp8[31:0] := INT32 ((SRC1[143:128] * SRC2[143:128]) >>14) + 1
temp9[31:0] := INT32 ((SRC1[159:144] * SRC2[159:144]) >>14) + 1
temp10[31:0] := INT32 ((SRC1[75:160] * SRC2[175:160]) >>14) + 1
temp11[31:0] := INT32 ((SRC1[191:176] * SRC2[191:176]) >>14) + 1
temp12[31:0] := INT32 ((SRC1[207:192] * SRC2[207:192]) >>14) + 1
temp13[31:0] := INT32 ((SRC1[223:208] * SRC2[223:208]) >>14) + 1
temp14[31:0] := INT32 ((SRC1[239:224] * SRC2[239:224]) >>14) + 1
temp15[31:0] := INT32 ((SRC1[255:240] * SRC2[255:240) >>14) + 1
DEST[15:0] := temp0[16:1]
DEST[31:16] := temp1[16:1]
DEST[47:32] := temp2[16:1]
DEST[63:48] := temp3[16:1]
DEST[79:64] := temp4[16:1]
DEST[95:80] := temp5[16:1]
DEST[111:96] := temp6[16:1]
DEST[127:112] := temp7[16:1]
DEST[143:128] := temp8[16:1]
DEST[159:144] := temp9[16:1]
DEST[175:160] := temp10[16:1]
DEST[191:176] := temp11[16:1]
DEST[207:192] := temp12[16:1]
DEST[223:208] := temp13[16:1]
DEST[239:224] := temp14[16:1]
DEST[255:240] := temp15[16:1]
DEST[MAXVL-1:256] := 0

VPMULHRSW (EVEX Encoded Version)

(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j := 0 TO KL-1
    i := j * 16
    IF k1[j] OR *no writemask*
         THEN
              temp[31:0] := ((SRC1[i+15:i] * SRC2[i+15:i]) >>14) + 1
              DEST[i+15:i] := tmp[16:1]
         ELSE
              IF *merging-masking*
                                                         ; merging-masking
                    THEN *DEST[i+15:i] remains unchanged*
                    ELSE *zeroing-masking*
                                                              ; zeroing-masking
                         DEST[i+15:i] := 0
              FI
    FI;
ENDFOR
DEST[MAXVL-1:VL] := 0

Intel C/C++ Compiler Intrinsic Equivalents

VPMULHRSW __m512i _mm512_mulhrs_epi16(__m512i a, __m512i b);

VPMULHRSW __m512i _mm512_mask_mulhrs_epi16(__m512i s, __mmask32 k, __m512i a, __m512i b);

VPMULHRSW __m512i _mm512_maskz_mulhrs_epi16( __mmask32 k, __m512i a, __m512i b);

VPMULHRSW __m256i _mm256_mask_mulhrs_epi16(__m256i s, __mmask16 k, __m256i a, __m256i b);

VPMULHRSW __m256i _mm256_maskz_mulhrs_epi16( __mmask16 k, __m256i a, __m256i b);

VPMULHRSW __m128i _mm_mask_mulhrs_epi16(__m128i s, __mmask8 k, __m128i a, __m128i b);

VPMULHRSW __m128i _mm_maskz_mulhrs_epi16( __mmask8 k, __m128i a, __m128i b);

PMULHRSW __m64 _mm_mulhrs_pi16 (__m64 a, __m64 b)

(V)PMULHRSW __m128i _mm_mulhrs_epi16 (__m128i a, __m128i b)

VPMULHRSW __m256i _mm256_mulhrs_epi16 (__m256i a, __m256i b)

SIMD Floating-Point Exceptions

None.

Other Exceptions

Non-EVEX-encoded instruction, see Table 2-21, “Type 4 Class Exception Conditions.”

EVEX-encoded instruction, see Exceptions Type E4.nb in Table 2-49, “Type E4 Class Exception Conditions.”